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Dynamics of multimode Fabry-Perot lasers: A nonlinear analysis

Ba An Nguyen* and Paul Mandel
Optique Nonline´aire Théorique, Universite´ Libre de Bruxelles, Campus Plaine code postal 231, B-1050 Bruxelles, Belgium

~Received 30 July 1997!

We apply the multiple time scale method to perform a nonlinear analysis of the Tang, Statz, and deMars rate
equations, which describe anN-mode Fabry-Perot laser in which all modes have an equal gain and a large loss
rate. In addition to the two relaxation oscillation frequenciesVL andVR known from the linearized analysis,
we find the four frequencies 2VL , VR6VL , and 2VR . The signature of antiphased dynamics for the new
frequencies is that there are no relaxation oscillations in the total intensity atVR6VL . The laser steady state
is shown to be stable, being characterized by damping rates derived explicitly. Relations among these damping
rates are obtained. We also study the role played by the initial condition in governing the manifestation of the
antiphase dynamics and the relative magnitude of the modal intensity power spectrum peak heights at the two
main frequenciesVL and VR . Finally, we deal with the resonant caseVR52VL . In this case, inphased
dynamics is shown to appear at 2VR , instead of atVR . @S1063-651X~97!11712-3#

PACS number~s!: 05.45.1b, 42.65.Sf, 42.55.Rz, 42.60.Rn
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I. INTRODUCTION

The Tang, Statz, and deMars~TSD! equations@1# have
recently been revisited in connection with antiphase dyna
ics ~AD! observed in solid-state multimode free-runni
Fabry-Perot lasers. In these lasers, the modes of the field
standing waves and the population inversion gratings cre
by each mode are also standing waves. The gratings
phase insensitive because the cross-gratings play no ro
the slow response of the population inversion due to th
rapid oscillations at the intermode beat frequency. Thus,
this class of N-mode lasers, only 2N11 equations are
needed for 2N11 real dynamical variables:N modal inten-
sities,N population inversion gratings, and one spatially a
eraged population inversion. The TSD equations are th
2N11 equations. The most pronounced collective se
organized behavior of a multimode laser is its intensity
herence. The modal intensities may respond to perturbat
at M frequencies (M<N), but their sum is almost or exactl
vanishing at all frequencies but the highest one. This p
nomenon, the so-called antiphase dynamics@2#, was ob-
served experimentally for the first time in optics@3# in a
neodymium-doped yttrium aluminum garnet~Nd:YAG! laser
containing a potassium titanyl phosphate~KTP! crystal re-
sponsible for the laser intracavity second-harmonic gen
tion. Unexpectedly, however, there is an asymptotic link@4#
between the rate equations modeling intracavity seco
harmonic generation in a Nd:YAG laser and the TSD eq
tions modeling a multimode Fabry-Perot laser. Both sets
equations display the same ‘‘nonlinear nucleus,’’ which
responsible for AD. It is worth noting that AD arises in
variety of circumstances: in the transient relaxation to ste
state@5–7#, in the presence of an external periodic modu
tion @8–11#, in the noise spectrum of a cw laser@12#, and in
the chaotic regime@9,10,13–15#.

From a theoretical point of view, several types of A
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have been identified@16#. Antiphased solutions of specifi
forms have also been investigated in the context
Josephson-junction arrays@17,18# and coupled laser array
@19,20#, as well as in a more general context of coupl
nonlinear oscillators@21–23#. For a solid-state Fabry-Pero
laser operating onN modes, the signature of AD is as fo
lows. The modal intensities have a response to an exte
perturbation which is characterized, in general, byN fre-
quenciesV1.V2.•••.VN such that the oscillations ar
always in-phased atV1 and perfectly or partially antiphase
at all other frequencies. This has been derived analytic
and confirmed experimentally forN52 in @24# andN53 in
@25–27#. In @27,28# different types of self-organization asso
ciated with AD have been conjectured for any numberN of
lasing modes as well. The simplest model, solvable for
arbitrary mode numberN, is the reference model@29#, in
which all the modes are assumed to have the same gain
an infinite loss rate. The effect of an arbitrary loss rate h
recently been taken into account in@30# and in a generalized
reference model@31#. A somewhat different approach ha
been followed in@32#. In both reference models@29# and
@31#, AD has explicitly been shown to be a universal pro
erty in the dynamics of multimode Fabry-Perot lasers, i.e
is free from the system preparation.

Most analytical results available up to now have be
obtained from the linearized theory. A notable exception i
global stability theorem that proves that the steady-state
lution of the rate equations is stable if the population inv
sion is everywhere positive@33,34#. Although the lineariza-
tion approximation succeeds in capturing the essen
aspects of the laser dynamics, it is still far from a compl
description of the problem. The purpose of this paper is
progress beyond the linearized theory to get better ins
into AD. We consider a model that is somewhat intermedi
between those of@29# and@31#. Namely, we assume an equ
gain and a finite but large loss rate for all modes. Introduc
multiple time scales suggested by the linearized stab
analysis, we perform a nonlinear analysis of the TSD eq
tions. As a result, we find a distinctive signature of AD
derive explicit expressions for the damping rates, clarify
o
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57 1445DYNAMICS OF MULTIMODE FABRY-PEROT LASERS: . . .
initial-condition-dependent manifestation of AD, and esta
lish relationships between the modal intensity power spe
peak heights at different relaxation oscillation frequencies
parallel with the theoretical treatment, we also carry out
merical simulations using the full TSD equations. We obt
good agreement between the analytical and numerical
sults.
Our paper is organized as follows. After the Introduction,
construct in Sec. II the nonlinear evolution equations for
deviation from the steady state. In Sec. III we solve the n
linear equations using the multiple time scale method, wh
leads to the formulation of solvability conditions. Physic
aspects based on the mathematical results of Sec. III
discussed in Sec. IV. Section V deals with the resonant c
to which the analysis done in Sec. III is not applicable. Co
cluding remarks are given in Sec. VI.

II. EVOLUTION EQUATIONS

We consider anN mode Fabry-Perot laser which can b
described by the 2N11 TSD rate equations@1,2#

«2
dIp

dt
5F S D2

Qp

2 Dgp21G I p ,

dQp

dt
5DgpI p2S 11 (

q51

N

gqI qDQp , ~1!

dD

dt
5w2D2 (

q51

N S D2
Qq

2 DgqI q ,

whereI p andQp denote the modal intensity and populatio
inversion grating associated with the same cavity mode
optical frequency, andD is the spatially averaged populatio
inversion.gp<1 is the modal gain in units of that of the firs
mode, w>1 is the pump rate in units of the first mod
threshold pump, and«51/Ak with k the modal loss rate
which is assumed to be mode-independent and scaled to
population inversion decay rate. Our interest is in lasers s
as Nd:YAG or LiNdP4O12 lasers which havek greater than
or equal to 104. For such lasers« is a useful small paramete
Let

Ip5I p2I p
s , «Qp5Qp2Qp

s, «D5D2Ds

be the deviations from the steady state$I p
s ,Qp

s, Ds% of ~1!.
The TSD equations yield for the deviations

«
dIp

dt
5gpSD2

Qp

2 D ~ I p
s1Ip!,

«
dQp

dt
5DsgpIp2Qp

s (
q51

N

gqIq

1«H gpD~ I p
s1Ip!2F11 (

q51

N

gq~ I q
s1Iq!GQpJ ,

~2!

«
dD
dt

52 (
q51

N

Iq2«FD1(
q

gqSD2
Qq

2 D ~ I q
s1Iq!G .
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Equations~2! are still exact. Expandinggp and the dy-
namical variables in powers of« leads to a sequence o
linear problems that may be solved sequentially. This is d
in the next section.

III. MULTIPLE TIME SCALES

We seek perturbative solutions of Eqs.~2! in the form of
a series in«,

Ip5«~Ip01«Ip11••• !, Qp5«~Qp01«Qp11••• !,

D5«~D01«D11••• !, ~3!

whereIp j , Qp j , andDj areO(1). In addition, we introduce
the simplifying assumptiongp51 ;p. Inserting Eq.~3! and
gp51 into Eq. ~2! generates on both sides infinite series
powers of«. If we truncate each side after its leading ord
in «, we see thatt/« is the relevant time scale. Yet,t be-
comes the relevant time scale at the next order in«, and so
on. In other words, the dynamics is governed by time sca
separated by powers of«. This is confirmed by a direct linea
stability analysis@2,30#. Guided by this argument, we intro
duce new independent multiple time scal
T21 ,T0 ,T1 ,T2 , . . . as

T215«21t, T05«0t, T15«1t, T25«2t, . . . .
~4!

Substituting Eq.~3! into Eq.~2! with the aid of the chain rule

d

dt
5

]

]T21

dT21

dt
1

]

]T0

dT0

dt
1

]

]T1

dT1

dt
1•••

5
1

«

]

]T21
1

]

]T0
1«

]

]T1
1•••,

and equating to zero coefficients of like orders of«, we
arrive at the following sequence of equation systems.

At O(1)

]Ip0

]T21
5SD02

Qp0

2 D I ,

]Qp0

]T21
5dIp02Q(

q51

N

Iq0 , ~5!

]D0

]T21
52 (

q51

N

Iq0 .

At O(«)

]Ip1

]T21
5SD12

Qp1

2 D I 1FIp0

I

]

]T21
2

]

]T0
GIp0 ,

]Qp1

]T21
5dIp12Q(

q51

N

Iq11ID02S ]

]T0
1U DQp0 , ~6!

]D1

]T21
52 (

q51

N

Iq11S ]2

]T21
2

2
]

]T0
21DD0 .
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At O(«2)

]Ip2

]T21
5SD22

Qp2

2 D I 1
1

I

]

]T21
S Ip0Ip12

Ip0
3

3I D
1

]

]T0
S Ip0

2

2I
2Ip1D 2

]Ip0

]T1
,

]Qp2

]T21
5dIp22Q(

q51

N

Iq21S Ip01Qp0

]

]T21
DD01ID1

2S ]

]T0
1U DQp12

]Qp0

]T1
, ~7!

]D2

]T21
52 (

q51

N

Iq21S ]2

]T21
2

2
]

]T0
21DD1

1S 2]

]T21

]

]T0
2

]3

]T21
3

1
]

]T21
2

]

]T1
DD0 .

And so on. The assumptiongp51 ;p implies I 5I p
s ,

Q5Qp
s , d5Ds and U511(q51

N I q
s511NI. Note that in

Eqs.~5!–~7! each of the dynamical variables still depends
all the time scalesT21 ,T0 ,T1 , . . . .

Let us rewrite the above systems of equations in ma
forms:

]Z0

]T21
5LZ0 , ~8!

]Z1

]T21
5LZ11M1 , ~9!

]Z2

]T21
5LZ21M2 , ~10!

where Zj is a 2N11 column vectorZj5col(Dj ,IT j ,
QT j ,I2 j ,Q2 j ,I3 j ,Q3 j , . . . ,IN j ,QN j) with IT j5(q51

N Iq j

and QT j5(q51
N Qq j , L is a (2N11)3(2N11) constant

matrix, andM j are 2N11 column vectors that depend no
linearly on the$Zk% with k, j . In this representationL has a
convenient form, given in Appendix A together withM1 and
M2.

A. TheO„1… problem

TheO(1) problem consists of the homogeneous equa
~8!, which can be obtained directly by linearizing the righ
hand side~rhs! of Eq. ~2! and has been studied in@2,29#
using another representation for the eigenvector. It has
distinct eigenvalues,
x

n

e

l150, ~11!

l j52 ivL with j 52,3, . . . ,N and vL5AId/2,
~12!

lN1 j51 ivL with j 52,3, . . . ,N, ~13!

lN1152 ivR with vR5AI ~2N1d2NQ!/25Aw21,
~14!

l2N1151 ivR . ~15!

The eigenvector associated with the zero eigenvalue is

Z0
~1!5col~1/2,0,N,0,1,0,1, . . . ,0,1!. ~16!

From ~12! and~13! it is clear that each of the two eigenva
ues6 ivL is N21 degenerate. TheN21 orthogonal eigen-
vectors associated with2 ivL are

Z0
~2!5col~0,0,0,2 ivL /d,1,0,0, . . . ,0,0!,

Z0
~3!5col~0,0,0,0,0,2 ivL /d,1, . . .,0,0!,

A ~17!

Z0
~N!5col~0,0,0,0,0,0,0, . . . ,2 ivL /d,1!,

while those associated withivL areZ0
(N1 j )

Z0
~N1 j !5Z0

~ j !* with j 52,3, . . . ,N. ~18!

As for the eigenvalues2 ivR andivR , the associated eigen
vectors are

Z0
~N11!5col„N/~NQ2d!,iNs,N,is,1,is,1, . . . ,is,1…,

~19!

wheres5vR /(NQ2d) and

Z0
~2N11!5Z0

~N11!* , ~20!

respectively.
It is easy to verify that the 2N11 solutions

Z0
(n)exp(lnT21) with n51,2, . . . ,2N11 of the homogeneous

problem ~8! are linearly independent. They thus constitu
the fundamental set of solutions of the homogeneous p
lem and its general solution is

Z05F•A, ~21!

whereF is the fundamental matrix of Eq.~8!, which is the
(2N11)3(2N11) matrix
F~T21!5„Z0
~1!exp~l1T21! Z0

~2!exp~l2T21! ••• Z0
~2N11!exp~l2N11T21!… ~22!
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andA is a 2N11 column vector

A5col~A0 ,AL,1 , . . . ,AL,N21 ,AR ,AL,1* , . . . ,AL,N21* ,AR* !

~23!

with A0 arbitrary real andAL, j and AR arbitrary complex
functions of all the time scales slower thanT21, i.e., of T0,
T1, etc.

The dependence of the vectorA on T0, T1, etc. cannot be
derived within theO(1) problem. This is the main restrictio
of the reference model@2,29# which retains only undampe
relaxation oscillations. To get a more complete picture of
laser dynamics, we need to analyze the next order equa
~9! which is theO(«) problem.

B. TheO„«… problem

Equation~9! is an inhomogeneous equation. Making u
of ~16!–~20! in ~A1!, we can expressM1 as

M15M1
~0!1@M1

~L !exp~2 ivLT21!1M1
~R!exp~2 ivRT21!

1M1
~2L !exp~22ivLT21!1M1

~2R!exp~22ivRT21!

1M1
~L2R!exp@2 i ~vL2vR!T21#

1M1
~L1R!exp@2 i ~vL1vR!T21#1c.c.#, ~24!

where the matricesM1
( j ) are given in Appendix B.

Since the homogeneous part of~9! coincides with the ho-
mogeneous problem~8! and the inhomogeneous partM1
contains terms proportional to exp(ivT21) with v50, vL
andvR , the problem~9! has bounded and periodic solution
if the following solvability conditions are satisfied@2#:

05@M1
~0! ,F ~1!#, ~25!

05@M1
~L ! ,F ~N1 j !#; j 52,3, . . . ,N, ~26!

05@M1
~R! ,F ~2N11!#, ~27!

where @a,b# denotes the inner product ofa and b while
F (n) are the eigenvectors of the homogeneous adjoint p
lem

]F

]T21
52L1F, ^a,Lb&[^L1a,b& ~28!

with ^a,b& the scalar product ofa and b. The matrixL1

has the same eigenvalues~11! to ~15! asL. Its eigenvectors
are

F ~1!5col~d2NQ,0,1,0,0,0,0, . . . ,0,0!, ~29!

F ~2!5col~0,2ivL /NI,21/N,22ivL /I ,1,0,0, . . . ,0,0!,

F ~3!5col~0,2ivL /NI,21/N,0,0,22ivL /I ,1, . . .,0,0!,

A ~30!

F ~N!5col~0,2ivL /NI,21/N,0,0,0,0, . . . ,22ivL /I ,1!,

F ~N11!5col~22N,22ivR /I ,1,0,0,0,0, . . . ,0,0!, ~31!

and

F ~N1 j !5F ~ j !* with j 52,3, . . . ,N11. ~32!
e
on

b-

Solving Eq.~9! yields the explicit dependence onT0 of the
functionsA

A05B0~T1 ,T2 , . . . !exp~2G0T0! ~33!

with

G0511N~2N21!I 2/~2vR
2 !, ~34!

AL, j5BL, j~T1 ,T2 , . . . !exp~2GLT0!, j 51,2, . . . ,N21
~35!

with

GL5U/2, ~36!

and

AR5BR~T1 ,T2 , . . . !exp~2GRT0! ~37!

with

GR5~2N11!wI/~4vR
2 !. ~38!

In the above formulas the functionsB are still arbitrary.
Using ~33!, ~35!, and ~37!, the vectorA given by ~23!

becomes

A5col„B0exp~2G0T0!,BL,1exp~2GLT0!, . . . ,BL,N21

3exp~2GLT0!,BRexp~2GRT0!,BL,1*

3exp~2GLT0!, . . . ,BL,N21* exp~2GLT0!,BR*

3exp~2GRT0!…. ~39!

The general solution of Eq.~9! is

Z15Z̃01Z1,par , Z̃05F•Ã ~40!

where Ã is given by Eq.~39! with B replaced byB̃, and
Z1,par is a particular solution of Eq.~9!:

Z1,par5F•E F21
•M̃1dT21 . ~41!

The vectorM̃1 is given by~A1! in whichD0, IT0, QT0, Iq0,
andQq0 are replaced byD̃0, ĨT0, Q̃T0, Ĩq0, andQ̃q0, respec-
tively. SubstitutingF from ~22! andM̃1 into ~41! yields

Z1,par5Z1,par
~0! exp~2G0T0!1$Z1,par

~L ! exp~2 ivLT212GLT0!

1Z1,par
~R! exp~2 ivRT212GRT0!

1Z1,par
~2L ! exp~22ivLT2122GLT0!

1Z1,par
~2R! exp~22ivRT2122GRT0!1Z1,par

~L2R!

3exp@2 i ~vL2vR!T212~GL1GR!T0#1Z1,par
~L1R!

3exp@2 i ~vL1vR!T212~GL1GR!T0#1c.c.%.

The different components ofZ1,par are

Z1,par
~0! 5

~2N21!IB̃0

2@d2N~Q22!#
col~0,N,0,1,0,1,0, . . . ,1,0!, ~42!
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Z1,par
~L ! 5

U

4d
colS 0,0,0,B̃L,1 ,

2 idB̃L,1

vL
,B̃L,2 ,

2 idB̃L,2

vL
, . . . ,B̃L,N21 ,

2 idB̃L,N21

vL
D , ~43!

Z1,par
~R! 5

B̃R

4@N~Q22!2d#~NQ2d!
col~Nia,Nb,Niq,b,iq,b,iq, . . . ,b,iq!, ~44!

Z1,par
~2L ! 5

Nb

I ~4vL
22vR

2 !
col„i B̃L

2 ,22vLB̃L
2 ,i ~NQ2d!B̃L

2 ,w1 ,if1 ,w2 ,if2 , . . . ,wN21 ,ifN21…, ~45!

Z1,par
~2R! 5

gB̃R
2

6IvR
2
col„Ni,22NvR ,Ni~NQ2d!,x,h,x,h, . . . ,x,h…, ~46!

Z1,par
~L2R!5

dv~2 !h~2 !B̃R*

vR~2vL2vR!
colS 0,0,0,B̃L,1 ,

i B̃L,1

v~2 !
,B̃L,2 ,

i B̃L,2

v~2 !
, . . . ,B̃L,N21 ,

i B̃L,N21

v~2 ! D , ~47!

and

Z1,par
~L1R!5

dv~1 !h~1 !B̃R

vR~2vL1vR!
colS 0,0,0,B̃L,1 ,

i B̃L,1

v~1 !
,B̃L,2 ,

i B̃L,2

v~1 !
, . . . ,B̃L,N21 ,

i B̃L,N21

v~1 ! D . ~48!
p

o

d

ou

to
on

ysis

w-

i-
The notation used in the above formulas is defined in A
pendix C.

With this, we have determined the explicit dependence
the dynamical variables on the first two time scales,T21 and
T0. Information on the slower time scalesT1 ,T2 , . . . is con-
tained in the functionsB̃.

C. TheO„«2
… problem

The unknown functionsB̃ should, in turn, be determine
by analyzing theO(«2) problem, Eq.~10!. This problem
admits periodic solutions provided that its inhomogene
part obeys the solvability conditions

05@M̃2
~0! ,F ~1!#, ~49!

05@M̃2
~L ! ,F ~N1 j !#; j 52,3, . . . ,N, ~50!

05@M̃2
~R! ,F ~2N11!#. ~51!

The M̃2
(0,L,R) which are defined in Appendix D, are related

M̃2 as follows:

M̃25M̃2
~0!exp~2G0T0!1@M̃2

~L !exp~2GLT02 ivLT21!

1M̃2
~R!exp~2GRT02 ivRT21!1NST8s1c.c.#,

~52!

where NST denotes nonsecular term and the matricesM̃2
( j )

are given in Appendix D.
The solvability conditions~49!–~51! yield

B̃05C0exp~2g0T1!, ~53!

B̃L, j5CL, jexp~2gLT1!, ~54!
-

f

s

B̃R5CRexp@~ irR2gR!T1#, ~55!

where theC’s are unknown functions ofT2 ,T3 , . . . , while

g05
d21

vR
2

2G052
NI

vR
2F11S N2

1

2D I G , ~56!

gL52GL , ~57!

gR5
NIw

2vR
2

2GR52
Iw

4vR
2

~58!

and

rR5
I

2vR
2 H 1

8vR
FNIa~w2GR!

vR
1bGRG2NwvRJ .

D. Initial conditions

So far we have derived the dependence of the solution
T21, T0, andT1. Because the slower time scalesT2, T3 , . . .
are not of practical importance, we can complete our anal
by determining the still unknown quantitiesB and C from
the initial condition, which should also be expanded in po
ers of«,

Z05«~Z0
01«Z1

01••• !,

where the superscript implies the initial value of the dynam
cal variable. Obviously, theB’s are to be obtained from

Z0~0,0, . . .!5Z0
0 ~59!

and theC’s from



In
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Z1~0,0, . . .!5Z1
0 , ~60!

whereZ0(0,0, . . . ) andZ1(0,0, . . . ) aregiven by Eqs.~21!
and~40!, respectively. We shall only solve Eq.~59!, since it
of

er
o
at
.

provides the dominant behavior of the laser dynamics.
matrix form, Eq.~59! reads

MB5Z0
0 , ~61!

where
B5col~B0 ,BL,1 ,BL,2 , . . . ,BL,N21 ,BR ,BL,1* ,BL,2* , . . . ,BL,N21* ,BR* !,

and

Z0
05col~D0

0 ,IT0
0 ,QT0

0 ,I20
0 ,Q20

0 ,I30
0 ,Q30

0 , . . . ,IN0
0 ,QN0

0 !.
ry-
en-

ffi-

qs.

to
n
.

ar

nt

re
me
ar
f

Solving Eq.~61! yields at once an explicit expression
the B’s in terms of the initial condition

B05
IQT0

0 12~d21!D0
0

vR
2

, ~62!

BL,q215
NQq0

0 2QT0
0

2N
1 i

d~NIq0
0 2IT0

0 !

2NvL
~63!

for q52,3, . . . ,N, and

BR5
~d21!~QT0

0 22ND0
0!

2NvR
2

1 i
~d21!IT0

0

NIvR
. ~64!

IV. DISCUSSION

Having solved the nonlinear problem analytically in a p
turbative manner, we discuss in this section the physical c
sequences of our results: intensity coherence, damping r
and universal versus initial-condition-sensitive properties
-
n-
es,

A. Intensity coherence

The collective self-organized feature of multimode Fab
Perot lasers is that relaxation oscillations of the modal int
sities are not uncorrelated. At bothO(1) andO(«), modal
oscillations atVR are always inphased because the coe
cients of exp(6ivRT21) for the total intensity are preciselyN
times those for a modal intensity, as is clearly seen from E
~19! and ~44!. On the other hand, for oscillations atVL ,
perfect antiphase occurs at bothO(1) andO(«) because the
modal intensities contain terms proportional
exp(6ivLT21), while the total intensity has no contributio
proportional to exp(6ivLT21), as is clearly seen from Eqs
~17! and ~43!.

The additional signature of AD gained from the nonline
analysis developed in this paper is that atO(«) the oscilla-
tion atVR6VL is present in the modal intensities but abse
in the total intensity, as is clearly seen from Eqs.~47! and
~48!. Thus, perfect antiphase arises atVR6VL as well. Our
analytical results are confirmed numerically in Fig. 1, whe
we plot the intensity power spectra using the transient ti
evolution obtained by numerically solving the full nonline
TSD equations~1!. It is evident from Fig. 1 that, in order o
increasing frequencies, there are six peaks atVL , VR2VL ,
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2VL , VR , VR1VL , and 2VR in the power spectra of the
modal intensities but only three peaks at 2VL , VR , and
2VR in that of the total intensity.

B. Damping rates

A nonlinear analysis is essential in obtaining the dep
dence on time scales slower thanT21. From the solvability
conditions ~25!–~27! we obtain the dependence onT0 at
O(e), which is of the form exp(2G0,L,RT0), as seen in Eqs
~33!, ~35!, and ~37!. Of importance is the fact that we hav
been able to derive theG ’s, Eqs.~34!, ~36!, and~38!, in such
a way that their positivity is manifest. This reveals that
O(e) the relaxation oscillations decay in time and theG ’s
are the damping rates. Furthermore, a direct use of Eqs.~34!,
~36!, and~38! yields the relation between the different dam
ing rates@35#

G052~2GL2GR!, ~65!

from which it follows that

GL.
1

2
GR .

However, more interesting is the relative magnitude betw
GL and GR themselves~rather than betweenGL and GR/2).
This can be obtained by observing, from Eqs.~36! and~38!,
that

FIG. 1. Intensity power spectra calculated numerically from
full nonlinear TSD equations~1! for N53, k553104, and equal
modal gains. The laser is initially near the steady state corresp
ing to the pumpw054.6. The initial condition isD05d(w0),
Qq

05Q(w0)@110.01/(q11)#, and I q
05I (w0)@110.01/(q1N

11)]. Thefinal state is the steady state withw52.6. Up toO(«),
our theory gives six possible oscillation frequencies:VL.18.69,
VR2VL.26.33, 2VL.37.37, VR.45.02, VR1VL.63.70, and
2VR.90.03, which are well reproduced in the power spectra of
modal intensities. The total intensity power spectrum, as predi
by the theory, displays only three peaks at 2VL , VR , and 2VR .
Perfect antiphase atVR6VL , in addition to that atVL , is verified.
For all figures, frequencies are in units of the population invers
decay rate.
-

t

n

GR2GL5
NI@ I 12~d21!#

4vR
2

. ~66!

Obviously, the rhs of Eq.~66! is positive and, hence, we
have the relation

GR.GL , ~67!

which means that the oscillation atVR decays faster than th
oscillation atVL .

The dependence onT1 displayed byB̃0, B̃L, j , andB̃R in
Eqs.~53!, ~54!, and~55! is derived from the solvability con-
ditions ~49!–~51!. It is obvious, from~56!–~58!, thatg0, gL ,
and gR are all real and negative. Furthermore, it is eas
checked from~56!–~58!, that the absolute values of theg’s
are bounded

ug0u,G0 , ugLu5GL and ugRu,GR , ~68!

guaranteeing stability of the steady state up toO(«2). At this
order of approximation the damping rates of the oscillatio
at VL , VR6VL , 2VL , VR , and 2VR are, respectively,
GL5GL1«g0, GR6L5GR1GL1«(gR1gL), G2L52GL
52(GL1«gL), GR5GR1«gR , and G2R52GR52(GR
1«gR). It follows from Eq.~68! that the damping ratesG are
all positive.

It is interesting to note the relationship between theg’s,

g052~gL2gR!, ~69!

from which we readily get

gR.gL . ~70!

Relation~69! is easily derived from~65! by taking into ac-
count Eqs.~56!–~58! and the equalitiesw5vR

211 as well as
vR

25NI1d21. Relations~67! and ~70! allow us to remark
that up toO(«2) the oscillation atVR is still damped out
faster than the oscillation atVL because

GR2GL5GR2GL1«~gR2gL!.0.

C. Universal versus initial-condition-sensitive properties

An effective tool to study the laser dynamics is the inte
sity power spectrum defined by

Pj~V!5U E
0

`

Ij~ t !exp~2p iVt !dtU2

, ~71!

where j 5T corresponds to the total intensity andj 5q to
modeq intensity. It is clear from our analytical results, Eq
~17!, ~19!, ~43!, ~44!, ~47!, and~48! that, independent of the
initial condition, the following power spectra relations hol

P1~VR!5P2~VR!5•••5PN~VR!,

PT~VR!5N2Pp~VR!; p51,2, . . . ,N, ~72!

PT~VL!5PT~VR1VL!5PT~VR2VL!50.

e
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The above relations are an expression of the inpha
dynamics at VR and the perfect antiphase atVL and
VR6VL . These properties are universal in the sense
they depend neither on the initial conditions nor on the la
parameters.

On the contrary, the power spectrum peak height a
certain frequency is a function of the initial condition. Whi
the peak height at 2VL , 2VR , andVR6VL is entirely dic-
tated by theC coefficients the peaks atVL and VR are
mainly determined by theB coefficients. The correction to
Pq(VL,R) due to theC’s is a small correction of order«.
Since the explicit dependence of theB’s on the initial con-
dition has been derived in Eqs.~62!–~64!, we are in a posi-
tion to investigatePq(VL,R) as a function of the initial con-
dition. Making use of Eqs.~62!–~64! we write the modal
intensity to leading order of« in the form
n
ie

is
ed

at
r

a

Iq~ t !5@aRcos~2pVRt !1bRsin~2pVRt !#exp~2GRt !

1@aL,qcos~2pVLt !1bL,qsin~2pVLt !#exp~2GLt !,

~73!

where

aR5
IT0

0

N
, bR5

I ~2ND0
02QT0

0 !

2NvR
,

aL,q5
NIq0

0 2IT0
0

N
, and bL,q5

vL~QT0
0 2NQq0

0 !

Nd
.

Inserting Eq.~73! into Eq. ~71! and integrating overt, we
readily obtain
Pq~VR!54p2VR
2H aRGR14pbRVR

GR~GR
2116p2VR

2 !
1

4pbL,qGLVL1aL,q@GL
214p2~VR

22VL
2!#

@GL
214p2~VR1VL!2#@GL

214p2~VR2VL!2#
J 2

1H aR~GR
218p2VR

2 !12pbRGRVR

GR~GR
2116p2VR

2 !
1

2pbL,qVL@GL
224p2~VR

22VL
2!#1aL,qGL@GL

214p2~VR
21VL

2!#

@GL
214p2~VR1VL!2#@GL

214p2~VR2VL!2#
J 2

~74!
-
ed

b-
ns

-
en
t be
the

eaks
ri-

ay
as
and

Pq~VL!5Pq~VR!u$GR↔GL ,VR↔VL ,aR↔aL,q ,bR↔bL,q% .
~75!

In our theory, by definition,VL,R areO(«21) andGL,R are
O(1), i.e., VL,R@GL,R . In this limit, Eqs. ~74! and ~75!
reduce to

Pq~VR!.
aR

21bR
2

4GR
2

5
~2vRIT0

0 !21I 2~2ND0
02QT0

0 !2

16N2vR
2GR

2
;q

~76!

and

Pq~VL!.
aL,q

2 1bL,q
2

4GL
2

5
d2~NIq0

0 2IT0
0 !21vL

2~QT0
0 2NQq0

0 !2

4N2d2GL
2

. ~77!

Now we are able to relate power spectrum peak heights
only at the same frequency but also at different frequenc
As a consequence of Eqs.~76! and ~77!, we can make the
following remarks.

~1! The peak height atVR is mode independent and
ot
s.

determined by the initial deviationsD0
0, QT0

0 , andIT0
0 of the

global variables only.
~2! The peak height atVL is mode dependent and is un

affected by the initial deviation of the spatially averag
population inversionD0

0. AD at VL is a very sensitive func-
tion of the initial conditions:~i! All modes may have a finite
peakPq(VL).0 if Qq0

0 ÞQT0
0 /N or/andIq0

0 ÞIT0
0 /N for all

q. In particular, ifQq0
0 andIq0

0 are such thatQT0
0 5IT0

0 50,
then Pq(VL)}(vLQq0

0 )21(dIq0
0 )2. Figure 2 displays the

power spectra forN53, k553104 and the initial conditions
D0

053.5, Q10
0 53.0, Q20

0 522.0, Q30
0 521.0, I10

0 52.0,
I20

0 521.1, andI30
0 520.9. These power spectra are o

tained by numerical simulation of the full TSD rate equatio
~1!. According to Eq. ~77!, our theory predictsP1(VL)
.P2(VL).P3(VL).0. Indeed, this is numerically con
firmed in Fig. 2. The fact that perfect antiphase occurs wh
every mode has a nonzero power spectrum peak canno
obtained from the analysis based only on the eigenvector:
initial condition plays a crucial role.~ii ! A modeq displays
no peak, i.e.,Pq(VL)50, if its initial deviations satisfy the
conditionsQq0

0 5QT0
0 /N andIq0

0 5IT0
0 /N. If there areN22

such modes, then the two remaining modes have equal p
regardless of their initial states. This is illustrated nume
cally in Fig. 3 for N53, k553104, D0

050.1, Q10
0 59.0,

Q20
0 51.0,Q30

0 55.0, I10
0 510.0, I20

0 52.0, andI30
0 56.0. ~iii !

Depending on the initial condition, a special situation m
occur in which all the individual modal intensities as well
the total intensity show only one peak atVR but no peak at
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all at VL . Theoretically, this corresponds to the ‘‘symme
ric’’ initial conditions $Q10

0 5Q20
0 5•••5QN0

0 and
I10

0 5I20
0 5•••5IN0

0 %. This is confirmed numerically in Fig
4.

~3! The modal peak ratio at different frequencies, as
rule, depends strongly on the initial condition. In Fig.
again for N53, k553104, we draw the ratio
Rq5Pq(VL)/Pq(VR) as a function of D0

0 and fixed
Q10

0 53.0,Q20
0 522.0,Q30

0 521.0,I10
0 52.0,I20

0 521.1, and
I30

0 520.9. The agreement between the theoretical~solid
curves! and numerical~black circles! results is very good.
Note again that without considering the initial condition,
relations between the power spectrum peak heights at di
ent frequencies can be established.

V. THE RESONANT CASE

The analytic results presented above are invalid
VR52VL since this makes bothZ1,par

(2L) in Eq. ~45! and
Z1,par

(L2R) in Eq. ~47! divergent. Solving the implicit equation
VR52VL yields N52 and w515/7 @2,11#. This resonant
case must be handled separately. TheO(1) general solution
remains formally determined by~21! but the amplitudesAL ,
AR do not simply follow the laws~35!, ~37!. Instead of Eq.
~24!, the resonant case requires the following decomposi
of M1:

M15M1
~0!1@M1

~1!exp~2 ivLT21!1M1
~2!exp~22ivLT21!

1M1
~3!exp~23ivLT21!1M1

~4!exp~24ivLT21!

1c.c.#, ~78!

FIG. 2. Same as Fig. 1 but the initial state is specified
D05d(w)13.5/k, Q1

05Q(w)13.0/k, Q2
05Q(w)22.0/k, Q3

0

5Q(w)21.0/k, I 1
05I (w)12.0/Ak, I 2

05I (w)21.1/Ak, and I 3
0

5I (w)20.9/Ak. The peak relationsP1(VL).P2(VL).P3(VL)
.0 andP1(VR)5P2(VR)5P3(VR).0 agree with the analytica
result.
a

r-

r

n

wherevL5vR/25A2/7 andM1
(0,1,2,3,4) are given in Appen-

dix E.
The solvability conditions ~25!–~27! with M1

(0) ,
M1

(L)[M1
(1) , and M1

(R)[M1
(2) yield that the amplitudeA0

must vary inT0 as

A05B0~T1 ,T2 , . . . !exp~253T0/32!

with B0(T1 ,T2 , . . . ) an unknown function, whereas th
T0-dependentAL and AR verify two coupled differential
equations

ȦL52AL1AL* AR ,

y

FIG. 3. Same as in Fig. 2 butD05d(w)10.1/k, Q1
0

5Q(w)19.0/k, Q2
05Q(w)11.0/k, Q3

05Q(w)15.0/k, I 1
0

5I (w)110.0/Ak, I 2
05I (w)12.0/Ak, and I 3

05I (w)16.0/Ak. At
VL mode 3 displays no peak while modes 1 and 2 show eq
peaks, in accordance with the theory.

FIG. 4. Same as Fig. 2 but the individual modes are equ
perturbed att50: D05d(w)11.0/k, Q1,2,3

0 5Q(w)13.0/k, and
I 1,2,3

0 5I (w)12.0/Ak. Both analytical and numerical results yield n
peaks atVL in the power spectra of both the modal and total inte
sities.
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ȦR5275AR/642AL
2/8. ~79!

These are the usual equations that describe second harm
generation in nonlinear optics@2#. It is easy to check from
Eq. ~79! that

]

]T0
S uARu21

1

8
uARu2D52

1

4S 75

8
uARu21uARu2D,0.

~80!

Equation ~80! means that both theVL and VR relaxation
oscillations always decay on the time scaleT0 although the
corresponding damping rates are not simply 1 and 75/6
derived forwÞ15/7. Figure 6 illustrates how the decay pr
cesses occur and how they are influenced by the initial c
ditions.

The O(«) particular solution of Eq.~9! in the resonant
case is

Z1,par5Z1,par
~0! exp~253T0/32!1@Z1,par

~1! exp~2 ivLT21!

1Z1,par
~2! exp~22ivLT21!1Z1,par

~3! exp~23ivLT21!

1Z1,par
~4! exp~24ivLT21!1c.c.#,

where

Z1,par
~0! 5

21B0

128
col~0,2,0,1,0!,

Z1,par
~1! 5

1

2
~AL1AL* AR!colS 0,0,0,

7

8
,2 iA7

2D , ~81!

FIG. 5. The ratiosRq5Pq(VL)/Pq(VR) between the power
spectrum peak heights at different frequencies as a function oD0

0

when the other initial values are fixed asQ1
05Q(w)13.0/k,

Q2
05Q(w)22.0/k, Q3

05Q(w)21.0/k, I 1
05I (w)12.0/Ak,

I 2
05I (w)21.1/Ak, and I 3

05I (w)20.9/Ak. The solid curves are
plotted using Eqs.~76! and ~77!, whereas the black circles resu
from numerical simulations.
nic

as

n-

Z1,par
~2! 5

1

1536
colS 3iA7

2
~345AR256AL

2!,42~75AR28AL
2!,

212iA7

2
~255AR28AL

2!,35~45AR18AL
2!,

22iA7

2
~765AR2152AL

2! D , ~82!

Z1,par
~3! 52

3

4
ALARcolS 0,0,0,

21

8
,iA7

2D , ~83!

Z1,par
~4! 52

7

3
AR

2colS 2 iA7

2
,4,2iA2

7
,2,iA2

7D . ~84!

The vectorsZ are five-dimensional, sinceN52. The surpris-
ing result due to the resonant interaction between the
intrinsic frequenciesVL and VR52VL is that, no matter
what AL and AR are, the modal oscillations appear to b
inphased at 2VR @see Eq.~84!# and not at VR as in the
nonresonant case. AtVR , as is evident from Eq.~82!, the
inphased dynamics is destroyed by spontaneous subharm
conversion associated with terms}AL

2 . It is worth empha-
sizing that such unusual properties, i.e., inphased oscillat
at 2VR but not at VR , are specific for the resonant case: a
deviation from the resonant case~say, by settingN52 and
wÞ15/7 or N>3 and arbitraryw.1) will recover the in-
phased dynamics atVR and remove it at 2VR . As for AD,
the resonant case, as revealed from Eqs.~81! and~83!, is just
a particular case of the general consideration. Here, bec
of VR2VL5VL andVR1VL53VL , AD arises atVL and
3VL .

FIG. 6. uAL(T0)u2 and uAR(T0)u2 vs T0 for uAL(0)u25uAR(0)u2

51, Re@AL(0)#50.2, Re@AR(0)#50.9 ~curves labeled 1! and Re
@AL(0)#50.9, Re@AR(0)#50.2 ~curves labeled 2!. The dashed
curves are forwÞ15/7. The dimensionless timeT0 is defined in Eq.
~4!.
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VI. CONCLUSION

In this paper we have shown that a multiple time sc
analysis of the TSD rate equations can be carried out bey
the usual linear approximation that defines the refere
models @29# and @31#. The analysis we have presented
applicable to homogeneously broadened Fabry-Perot la
characterized by a photon lifetime much smaller than
fluorescence lifetime. This limit holds for many solid-sta
and microchip lasers. Without any approximation, the T
equations are not solvable in analytic form for an arbitra
number of modes. We have introduced two simplifying a
sumptions that make the problem soluble by iteration:
linear gains and losses are mode independent. This is a
dard approximation and its validity rests on the fact that
longitudinal modes are spread over a very small fraction
the linear gains and losses of the spectral ranges.

The mathematical development is presented in Sec.
while the physical consequences are discussed in Sec
Among the results obtained here is the list of frequencie
which the solution of the TSD equations will display osc
lations and the relative weight of these oscillations in
dynamical evolution. Although the oscillation frequenci
could have been foreseen quite easily, we also derive
e
nd
e

rs
e

y
-
e
an-
e
f

I,
V.
at

e

he

associated damping rates and the relative weights, al
which could scarcely be guessed offhand. For the damp
rates, we derive some known relations but add new res
that fully determine the relative magnitude of the dampin
In addition, an explicit evaluation of the power spectra lea
to a neat discussion of the effect of the initial conditions
the relations among the peaks of the power spectra eithe
the same mode but at different frequencies or for differ
modes but at the same frequencies.

Finally, we show that there is a resonant situation
which the two internal frequenciesVR andVL are commen-
surate. This requires a special analysis since otherwise t
are divergencies. In the framework of the perturbation ana
sis carried out in this paper, there is no boundary layer c
necting the resonant and the nonresonant situations. Su
boundary layer would require a different scaling to app
and be analyzed.
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APPENDIX A: DEFINITIONS OF L , M 1, AND M 2

The matrixL, and the vectorsM1 andM2 appearing in Eqs.~8!–~10! are

L5S m1 O8 ••• O8

R m2 ••• O

A A � A

R O ••• mN

D ,

where

m15S 0 21 0

NI 0 2I /2

0 d2NQ 0
D , m25m35•••5mN5S 0 2I /2

d 0 D ,

R5S I 0 0

0 2Q 0D , O85S 0 0

0 0

0 0
D , O5S 0 0

0 0D ,

while

M15colF S ]2

]T21
2

2
]

]T0
21DD0 ,

1

2I (q51

N ]Iq0
2

]T21
2

]IT0

]T0
,NID02S ]

]T0
1U DQT0 ,

1

2I

]

]T21
I20

2 2
]I20

]T0
,ID0

2S ]

]T0
1U DQ20,

1

2I

]

]T21
I30

2 2
]I30

]T0
,ID02S ]

]T0
1U DQ30, . . . ,ID02S ]

]T0
1U DQ30,ID02S ]

]T0
1U DQN0G

~A1!
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and

~A2!

APPENDIX B: DEFINITIONS OF M 1
„ j …

Here are the expressions forM1
( j ) in Eq. ~24!:

M1
~0!5colS 2

A01Ȧ0

2
,0,NA0 ,0,A0,0,A0 , . . . ,0,A0D , ~B1!

M1
~L !5colS 0,0,0,

ivLȦL,1

d
,AL,1 ,

ivLȦL,2

d
,AL,2 , . . . ,

ivLȦL,N21

d
,AL,N21D , ~B2!

M1
~R!5col~aR ,2 iNrȦR ,NAR ,2 irȦ R ,AR ,2 irȦ R ,AR , . . . ,2 irȦ R ,AR!, ~B3!

M1
~2L !5 ibcol~0,NAL

2/I ,0,AL,1
2 ,0,AL,2

2 ,0, . . . ,AL,N21
2 ,0!, ~B4!

M1
~2R!5 igAR

2col~0,N/2I ,0,1,0,1,0, . . . ,1,0!, ~B5!

M1
~L2R!5 iAR* col~0,0,0,h~2 !AL,1,0,h~2 !AL,2,0, . . . ,h~2 !AL,N21,0!, ~B6!

and

M1
~L1R!5 iARcol~0,0,0,h~1 !AL,1,0,h~1 !AL,2,0, . . . ,h~1 !AL,N21,0!. ~B7!

In the above expressions the following notations have been introduced:

A05S I

2
2U DA02Ȧ0 ,AL, j52~UAL, j1ȦL, j !, aR52

N@~vR
211!AR1ȦR#

NQ2d
,

r 5
vR

NQ2d
, AR5S NI

NQ2d
2U DAR2ȦR , AL

25 (
i 51

N21

AL,i
2 1 (

j 5 i 11

N21

(
i 51

N21

AL,iAL, j ,
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b5
2vL

3

d2
, g5

2vR
3

~NQ2d!2
, h~7 !56

2vLvR~vL7vR!

d~NQ2d!
.

The dot implies a derivative with respect toT0.

APPENDIX C: NOTATIONS FOR Z1,par

This appendix defines the notations appearing in Eqs.~42!–~48!:

a5
1

vR
@2w~N22NQ12d!23NI13U~NQ2d!#, b52Nw1NI2U~NQ2d!,

q5
1

vR
@NI~NQ28N2d!1U~8N2NQ2d!~NQ2d!26Nw~NQ2d!#,

w j5mB̃L
22nB̃L, j

2 , f j5xB̃L
22yB̃L, j

2 , B̃L
25 (

i 51

N21

B̃L,i
2 1 (

j 5 i 11

N21

(
i 51

N21

B̃L,i B̃L, j ,

m5
2

3NvL
~vL

22vR
2 !, n5

2I

3NvL
~4vL

22vR
2 !, x5

1

3NvL
2 @d~vL

22vR
2 !13NQvL

2#,

y5
dI

3NvL
2 ~4vL

22vR
2 !, x5

2vR

4vR
22vL

2 @vL
22vR

2~116I !#,

h5
i

4vR
22vL

2 @NQ~4vR
22vL

2!2d~vR
22vL

2!26dIvR
2 #, v~6 !5~vL6vR!/d.

APPENDIX D: DEFINITIONS OF M̃ 2
„ j …

The matricesM̃2
( j ) in Eq. ~52! are

M̃2
~0!5col~ b̃0 ,Na1B̃0 ,NB̃0 ,a1B̃0 ,B̃0 ,a1B̃0 ,B̃0 , . . . ,a1B̃0 ,B̃0!, ~D1!

M̃2
~L !5col~0,0,0,B̃L,1 , b̃L,1 ,B̃L,2 , b̃L,2 , . . . ,B̃L,N21 , b̃L,N21!, ~D2!

and

M̃2
~R!5col~NbR ,NB̃R ,N b̃R ,B̃R , b̃R ,B̃R , b̃R , . . . ,B̃R , b̃R!. ~D3!

In Eqs.~D1!–~D3!

b̃05@~G021!B̃02B̃08#/2, B̃05G0B̃02B̃08 , B̃L, j5~ ia21a3!GLB̃L, j2 ia2B̃L, j8 ,

b̃L, j5~12 ia4!GLB̃L, j2B̃L, j8 , bR5@~a51 ia6!~GR2w!2 ia5wvR#B̃R2a5B̃R8 ,

B̃R5~a71 ia8!GRB̃R2 ia8B̃R8 , b̃R5GRB̃R2B̃R8 , a15
~2N21!G0I 2

4vR
2

, a252
vR

d
,

a35
U

4d
, a452

U

4vR
, a552

I

2~d21!
, a65

aI

4vR
2

, a75
ba6

a
, a85vRa5 .

The prime denotes a derivative with respect toT1 .
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APPENDIX E: DEFINITIONS OF THE MATRICES M 1
„0,1,2,3,4…

The matricesM1
(0,1,2,3,4)appearing in Eq.~78! are

M1
~0!5colS 2

A01Ȧ0

2
,0,2

7A0

2
22Ȧ0,0,2

7A0

4
2Ȧ0D ,

M1
~1!5colS 0,0,0,

i

4
A7

2
~ȦL22AL* AR!,22AL2ȦLD ,

M1
~2!5colS 15AR17ȦR

2
,

i

2
A7

2
~AL

214ȦR!,2
15AR14ȦR

2
,
i

8
A7

2
~AL

218ȦR!,2
15AR14ȦR

4
D ,

M1
~3!5

3i

2
A7

2
ALARcol~0,0,0,1,0!,

and

M1
~4!52iA14AR

2col~0,2,0,1,0!.
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