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Dynamics of multimode Fabry-Perot lasers: A nonlinear analysis
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We apply the multiple time scale method to perform a nonlinear analysis of the Tang, Statz, and deMars rate
equations, which describe &rmode Fabry-Perot laser in which all modes have an equal gain and a large loss
rate. In addition to the two relaxation oscillation frequendigsand Qg known from the linearized analysis,
we find the four frequencies(2, , Qg+, , and A)g. The signature of antiphased dynamics for the new
frequencies is that there are no relaxation oscillations in the total intensityat(), . The laser steady state
is shown to be stable, being characterized by damping rates derived explicitly. Relations among these damping
rates are obtained. We also study the role played by the initial condition in governing the manifestation of the
antiphase dynamics and the relative magnitude of the modal intensity power spectrum peak heights at the two
main frequencieq), and Q. Finally, we deal with the resonant ca§k=2(), . In this case, inphased
dynamics is shown to appear af23, instead of af)r. [S1063-651X97)11712-3

PACS numbeis): 05.45:+Db, 42.65.Sf, 42.55.Rz, 42.60.Rn

I. INTRODUCTION have been identified16]. Antiphased solutions of specific
forms have also been investigated in the context of
The Tang, Statz, and deMa($SD) equations[1] have  Josephson-junction array47,18 and coupled laser arrays
recently been revisited in connection with antiphase dynamf19,20), as well as in a more general context of coupled
ics (AD) observed in solid-state multimode free-running nonlinear oscillator§21-23. For a solid-state Fabry-Perot
Fabry-Perot lasers. In these lasers, the modes of the field al@ser operating o modes, the signature of AD is as fol-
standing waves and the population inversion gratings creatddws. The modal intensities have a response to an external
by each mode are also standing waves. The gratings agerturbation which is characterized, in general, Nbyfre-
phase insensitive because the cross-gratings play no role guenciesQ);>Q,>--- >, such that the oscillations are
the slow response of the population inversion due to theialways in-phased d2, and perfectly or partially antiphased
rapid oscillations at the intermode beat frequency. Thus, foat all other frequencies. This has been derived analytically
this class ofN-mode lasers, only l2+1 equations are and confirmed experimentally fdi=2 in [24] andN=3 in
needed for R+ 1 real dynamical variabledN modal inten-  [25-27. In [27,29 different types of self-organization asso-
sities,N population inversion gratings, and one spatially av-ciated with AD have been conjectured for any numieof
eraged population inversion. The TSD equations are thosksing modes as well. The simplest model, solvable for an
2N+1 equations. The most pronounced collective self-arbitrary mode numbeN, is the reference mod¢R9], in
organized behavior of a multimode laser is its intensity co-which all the modes are assumed to have the same gain and
herence. The modal intensities may respond to perturbatioren infinite loss rate. The effect of an arbitrary loss rate has
atM frequencies 1 <N), but their sum is almost or exactly recently been taken into account[80] and in a generalized
vanishing at all frequencies but the highest one. This phereference model31]. A somewhat different approach has
nomenon, the so-called antiphase dynanfigs was ob- been followed in[32]. In both reference model9] and
served experimentally for the first time in opti€3] in a  [31], AD has explicitly been shown to be a universal prop-
neodymium-doped yttrium aluminum garridld:YAG) laser  erty in the dynamics of multimode Fabry-Perot lasers, i.e., it
containing a potassium titanyl phosph#tTP) crystal re- s free from the system preparation.
sponsible for the laser intracavity second-harmonic genera- Most analytical results available up to now have been
tion. Unexpectedly, however, there is an asymptotic [lhk  obtained from the linearized theory. A notable exception is a
between the rate equations modeling intracavity secondglobal stability theorem that proves that the steady-state so-
harmonic generation in a Nd:YAG laser and the TSD equalution of the rate equations is stable if the population inver-
tions modeling a multimode Fabry-Perot laser. Both sets ofion is everywhere positivi83,34]. Although the lineariza-
equations display the same ‘“nonlinear nucleus,” which istion approximation succeeds in capturing the essential
responsible for AD. It is worth noting that AD arises in a aspects of the laser dynamics, it is still far from a complete
variety of circumstances: in the transient relaxation to steadgescription of the problem. The purpose of this paper is to
state[5-7], in the presence of an external periodic modula-progress beyond the linearized theory to get better insight
tion [8—11], in the noise spectrum of a cw laddi2], and in  into AD. We consider a model that is somewhat intermediate
the chaotic regim¢9,10,13-15% between those d29] and[31]. Namely, we assume an equal
From a theoretical point of view, several types of AD gain and a finite but large loss rate for all modes. Introducing
multiple time scales suggested by the linearized stability
analysis, we perform a nonlinear analysis of the TSD equa-
*Permanent address: The Institute of Physics, P.O. Box 429, Btions. As a result, we find a distinctive signature of AD,
Ho, Hanoi, Vietnam. derive explicit expressions for the damping rates, clarify the
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initial-condition-dependent manifestation of AD, and estab- Equations(2) are still exact. Expanding,, and the dy-
lish relationships between the modal intensity power spectraamical variables in powers of leads to a sequence of
peak heights at different relaxation oscillation frequencies. Iinear problems that may be solved sequentially. This is done
parallel with the theoretical treatment, we also carry out nudin the next section.

merical simulations using the full TSD equations. We obtain

good agreement between the analytical and numerical re- ll. MULTIPLE TIME SCALES

sults.

Our paper is organized as follows. After the Introduction, we ~We seek perturbative solutions of Eq8) in the form of
construct in Sec. Il the nonlinear evolution equations for the2 Series Ire,

deviation from the steady state. In Sec. Il we solve the non-

linear equations using the multiple time scale method, which Ly=e(Ipotelpt---), Q=e(QpoteQpt---),

leads to the formulation of solvability conditions. Physical
aspects based on the mathematical results of Sec. Il are
discussed in Sec. IV. Section V deals with the resonant CaBhere
to which the analysis done in Sec. Il is not applicable. Con
cluding remarks are given in Sec. VI.

D=¢(Dy+eDy+---), 3)

T, Qpj» andD; areO(1). Inaddition, we introduce
the simplifying assumptiory,=1 Vp. Inserting Eq(3) and
¥p=1 into Eqg.(2) generates on both sides infinite series in
powers ofe. If we truncate each side after its leading order
in e, we see that/e is the relevant time scale. Yet,be-
We consider alN mode Fabry-Perot laser which can be comes the relevant time scale at the next ordet,iand so

Il. EVOLUTION EQUATIONS

described by the 8+ 1 TSD rate equationfL,?] on. In other words, the dynamics is governed by time scales
separated by powers ef This is confirmed by a direct linear
,dlp Qp stability analysi§2,30]. Guided by this argument, we intro-
e e R Y duce new independent multiple time  scales

T,l,To,Tl,Tz, ... as

dQ N 1 0 1 2

=P _ _ T_1=e *t, To=e"t, Ti=et, Tr=e%t,....

3t =DP%lp 1+q§1 yq|q) Qp. (1) 1 0 1 2 @

dbD Substituting Eq(3) into Eqg.(2) with the aid of the chain rule

. Q
—=w-D-, (D——q)'yqlq,
dt d=1 2 d ¢ dT., o dT, o dT,

—_—= —_ 4 N
wherel , andQ, denote the modal intensity and population dt 4T, dt = JTo dt 4T, dt
inversion grating associated with the same cavity mode at 1 9 9
optical frequency, an® is the spatially averaged population =— + .
inversion.y,<1 is the modal gain in units of that of the first edT_y dTo Ty

tthder; V;’(Tl Is the gu_mle \/rEate_tL? kur::s of :jhsf If|rst mf[)de and equating to zero coefficients of like orders &f we
reshold pump, ane = wi € modal 0SS 1ale,  5rive at the following sequence of equation systems.
which is assumed to be mode-independent and scaled to the

> O ; ; - At O(1)
population inversion decay rate. Our interest is in lasers such
as Nd:YAG or LiNdP,0 4, lasers which havé greater than 0T o 900
or equal to 16. For such lasers is a useful small parameter. P =< o— —p) [
aT_4 2
Let
N
I=1,—-13, 9,=Q,—Q;, &£D=D-DS 9p0
P~ 'p  'p PT NP p an =deO—Q211qo, 5
be the deviations from the steady stétg,Qp, D°} of (1). -t 4
The TSD equations yield for the deviations N
Dy S 7
dz, 9 I, &
_P_ _ =P -1 q=1
£t —yp(D 5 (I,§+Ip),
At O(e)
do N
p_
€ dt —DsnypIp—Qrs)qu ‘quq &Ipl _ _% " Zﬂ 0 _i T
aT_4 12 | 9T_; T, P
N
+el ¥ DUSHT)—| 1+ D y,(13+1,)|Q ] 90 N P
P P P q=1 4 a P plzdel_Qz Iq1+|D0_ —+U QpOl (6)
N 2
N oD J J
dD 1
—=— — i =- Int|——=—-1|D
ST qzl Iy—¢ D-i—% 'yq(D > )(IZ+IQ) . aT_, qzl ql aTZ, 9T ) 0
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At O(&?) A1=0, (11
IZps O\ 1 4 I . L
P _ _ =P - > Ni=—iw_ with =23, ... and o =+1d/2,
aT (DZ 2 ' T T Tt g : : : N P
J [Tho IZpo : L
(9_T0 2] Ipl _5_1—1, )\Nﬂ-:-i-le with J:2,3, N, (13)
20 N Ani1=—iwr With wog=VI(2N+d—NQ)/2=\w—1,
2
F: =dZ,,— Qq; Toa*| Too+ Qoo r— | Dot 1D (14
K 5on Aon+1= Tiwg. (15
0 1 The eigenvector associated with the zero eigenvalue is
LR N S B 2= col(1/2,0N,0,1,0,1 . . .,0,1). (16)
oT_1 ¢\ gr2, T, !

From (12) and(193) it is clear that each of the two eigenval-
20 9 3 d d ues*iw, iIs N—1 degenerate. Thd—1 orthogonal eigen-
aT_, 9T, __aTeil + aT_, dT, vectors associated withiw, are

2) _ i
And so on. The assumptiory,=1 Vp implies I—IS 2y)=c0l(0,0,0iw /d,1,00. ..,0,0),

Q=Qp, d=D°® and U=1+3{_,I5=1+NI. Note that in

Egs. (5) (7) each of the dynam|cal variables still depends on 2¥=¢0l(0,0,0,0,0-iw /d,1,...,0,0),
all the time scale§ _;,Tq,Tq, ... .
Let us rewrite the above systems of equations in matrix : 17)
forms:
- 2ZMNM=c0l(0,0,0,0,0,0,0. .. ,—iw /d,1),
dZq
IT_y ° ® while those associated witho, are ZJ**!)
IZ, ZNH=z0*  with j=2,3,...N. (18)
=LZ;+Mq, (9)
aT_,

As for the eigenvalues- i wg andiwg, the associated eigen-
vectors are

025
T l—LZz+'V'z, (10 ZN* D =col(N/(NQ—d),iNo,N,io,Lio,1, . . . joD),
(19
where Z; is a 2N+1 column vecto_ij=coI(D- Irj whereo= wr/(NQ—d) and
QT] 'IZj ,sz "7’-3] 'Q3j g s ’INJ !QNj) W|th ITjZEq 1Iqj
and Qrj=30_;Qq;, L is a (N+1)x(2N+1) constant ZENTD = ZN+ D (20)
matrix, andM; are 2N+ 1 column vectors that depend non- .
linearly on the{ Z,} with k<j. In this representatioh has a  respectively.
convenient form, given in Appendix A together with; and It is easy to verify that the R+1 solutions
M. zMWexp,T_y) withn=1,2, ... ,N+1 of the homogeneous
problem (8) are linearly independent. They thus constitute
A. The ©(1) problem the fundamental set of solutions of the homogeneous prob-

lem and its general solution is
The O(1) problem consists of the homogeneous equation

(8), which can be obtained directly by linearizing the right- Zo=D-A, (22)
hand side(rhs) of Eq. (2) and has been studied (2,29

using another representation for the eigenvector. It has fivevhere® is the fundamental matrix of E{8), which is the
distinct eigenvalues, (2N+1)X(2N+1) matrix

D(T_)=(ZPexp AT 1) ZPexpN,T_q) - ZE Yexphon:1T 1)) (22
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A (Ag A A AL AF Ax A%) functionsA
=COlAQ:AL Ly - - - ALN-1ARIAL L « -+ AL N-17R
(23) AO: Bo(Tl,Tz, N .)eX[i—FOTO) (33)
with A arbitrary real andA, ; and Ag arbitrary complex ~ Wwith
flyncetL(():ns of all the time scales slower th@n,, i.e., of Ty, To=1+N(2N— 1)I2/(2w§), (34)
1y .
The de.pe.ndence of the vec'r@ron_ Tp, T4, etc: cannqt pe ALj=BL (T, Ty, .. )exp(— T Tp),j=12,... N-1
derived within the?(1) problem. This is the main restriction (35)

of the reference mod¢R,29] which retains only undamped .
relaxation oscillations. To get a more complete picture of theV with

laser dynamics, we need to analyze the next order equation I =u/n (36)
(9) which is theO(e) problem.

and
B. The O(&) problem r
=Br(T{,T,, ...)exp—I'grT 3
Equation(9) is an inhomogeneous equation. Making use R(TL T2, )@= TrTo) S
of (16)—(20) in (Al), we can expresM, as with
Mi=MP+[MPexp—iw T_1)+M{Pexp —iwgT ;) Tr=(2N+1)Wi/(403). (39)
(L) oy — 2i (2R) gy — 2i
+Myexp(— 2w Tog) + M exp( — 2iwgT-1) In the above formulas the functiofs are still arbitrary.
(L—R) . _ Using (33), (35), and (37), the vectorA given by (23)
+ Ml eXF[ |(w|_ a)R)T_l] becomes
+MERexd —i(w, + wr)T_1]+c.cl, 24
1 et og T-a] o) @9 A= colBoexp ~TgTo)Byaexa~T\To), - Bun 1
where the matricem{ are given in Appendix B. *
Xexp—I' Tg),Brexp(—I'gTy),B
Since the homogeneous part(8j coincides with the ho- =T To) Brexp —I'eTo) BL,
mogeneous problen8) and the inhomogeneous pavt; xexp(—T' Tp), ... Bl y_exp—T' Ty),Bk
contains terms proportional to exp{l_;) with w=0, o '
andwg, the problem(9) has bounded and periodic solutions xXexp(—I'rTo)). (39)

if the following solvability conditions are satisfid@]: The general solution of Eq9) is

0=[M{? F®1, (25) - - —
Z:I.:ZO"_Zl,par! Zozq)A (40)
o=[M{" FN*DT. j=23,...N, (26) - _ —
where A is given by EQq.(39) with B replaced byB, and
0=[M{P F@N+1, (270 Z1par i a particular solution of Eq9):

where[ a,B] denotes the inner product ef and 8 while
F( are the eigenvectors of the homogeneous adjoint prob-
lem

21 par=®- f O LM, dT_;. (41

The vectorM, is given by(A1) in which Dy, Z1o, Q1o Ty
=—L"F, (a,LB)=(L"a,B) (28)  andQy are replaced bPy, Z1o, Oro, Zgo, and Dy, respec-
tively. Substituting® from (22) and M into (41) yields

JF
aT_,
with (@, B) the scalar product o and 8. The matrixL*

has the same eigenvalugkl) to (15) asL. Its eigenvectors Zl,parzZ(logarexp(—FOTo)+{Z(1Ega,exq—iwLT_l—FLTO)
are

exp —iwrT_1—T'rTo)
F®=col(d—NQ,0,1,0,0,0,0. . .,0,0), (29 12‘? RI-1 TRYO
+ z exp—2iw T_1—2T T

F(?=col(0,2 o INI,—1/N,-2iw /1,1,0,9...,0,0), Lpar Li-1 LTo)

+ )+
F(®=col(0,2w, /NI,—1N,0,0~2iw, /1,1, ...00), 1par@XF(~ 2l 0gT 1~ 2T To) + 2ot

xXexg —i(w —wr)T_1— (FL+FR)T0]+Z(1p:1$)

(30
FN =¢ol(0,2 w, /NI,—1/N,0,0,0,0 . . . ,—2iw,/1,1), xexf —i(oy+wp)T-1 = (I' +T'r) Tol +c.CJ.
FN+D = col(— 2N, — 2i wg/1,1,0,0,0,0. . .,0,0), (31) The different components &, ,,,, are
and 2N—-1)IB
20 __{ /1B col(0N,0,1,0,1,0...,1,0), (42

FNVD=FD* with j=2,3,...N+1. (32 ~*ar 2[d—N(Q-2)]
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U ~ _idgL,l ~ - id’éva ~ _idEL,N—l
Z?LI,-D)HTZRCOI anyoBL'ly 1BL,21 wL y e ey L’N,l,—wL y (43)
B
R _ R ~ . . . . .
ipar 4[N(Q_2)_d](NQ_d)\,ol(Nla,N,B,Nlﬁ,ﬁJﬁ,ﬂ,lﬁ, B, (44)
Goar=——5——5-ColiBY , 20, BY ,I(NQ—d)B 1,1 1,902,162, - - - on—1ibn-1), (45)
Tpar— ——5COINi, —2Nwg,Ni(NQ—d), x, 7.x,7, - . . X, 1), (46)
6l wg
do " h(-)B iB iB iB
L-R)_ R ~ Ll =~ L2 = LN—1
Z&,par —wR(ZwL—wR)COI O,O,OBL,L o) ,BL,2, o)’ ,BL,N,l, = (47)
and
do™h("B ~ B~ B - iB N
L+R)_ R L1 L2 L,N-1
Z —wR(ZwL+wR)COI O’O’OB'-*l'wH) B, e ,BL,N_l,—wH) . (48)
|
'Fl)'gﬁdnotczéltion used in the above formulas is defined in Ap- 'gR: Crex (ipr—9gr) T1], (55)
ix C.
With this, we have determined the explicit dependence ofyhere theC's are unknown functions of,,Ts, . . ., while
the dynamical variables on the first two time scales; and
To. Information on the slower time scal&s,T,, ... is con- d—1 NI 1
tained in the functions. 9o=—% —lo=——|1+|N~— 5)'}’ (56)
WR WR
C. The O(£?) problem g=-T 57)
L=l
The unknown function® should, in turn, be determined
by analyzing theO(e?) problem, Eq.(10). This problem NIw w
admits periodic solutions provided that its inhomogeneous gR:2_2_ R — 4—2 (58)
part obeys the solvability conditions “R “r
O:[M(ZO) ,F(l>], (49) and
— D1 i I 1 [Nla(w—TgR)
0=[MYP) ,FN*I] j=2,3,... N, (50) _t R+ BT x| —Nwo }
PR 2wl Bur wr Pl i
0=[MP FEN+1], (51)

The MP-R which are defined in Appendix D, are related to
M, as follows:

M,=Mexp(—TTo) +[ M exp( — '\ To—iw T_4)
+MPexp —TrTo—iwgT_1)+NST's+c.c],
(52

where NST denotes nonsecular term and the matilitgs
are given in Appendix D.
The solvability conditiong49)—(51) yield

Bo=Coexp(—goTy), (53

§L,j:CL,jexF(_gLT1), (54

D. Initial conditions

So far we have derived the dependence of the solution on
T_4, Ty, andT,. Because the slower time scaleg T3, . ..
are not of practical importance, we can complete our analysis
by determining the still unknown quantities and C from
the initial condition, which should also be expanded in pow-
ers ofe,

20:8(28"‘8224----),

where the superscript implies the initial value of the dynami-
cal variable. Obviously, th&'s are to be obtained from
20(0,0,...)=20 (59

and theC’s from
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Z,(0,0, .. .):32, (60) provides the dominant behavior of the laser dynamics. In
matrix form, Eq.(59) reads
. B=2Zz3, 61
where2,(0,0, . ..) andZ,(0,0, . . .) aregiven by Eqs(21) M 0 (6D
and(40), respectively. We shall only solve E(9), since it  where
( ! 0 0 0 -—NI 0 0 0 NI
2 T 2(d-1) 2(d—1)
lNI(l)R lNI(l)R
0 0 0 0 —— 0 0 —_—
2(d—1) 2(d-1)
N 0 0 0 N 0 0 0 N
iwL lIwR iwL lIwR
-—£ o0 0 - £ 0 0 —
0 - 3d-1) d 2(d=1)
M= 11 0 0 1 1 0 0 1
iwy ilog iwp ilwg ’
0o -—= 0 - 0o —= o —=
0 d 2(d—1) d 2(d—1)
1 0 1 0 1 0 1 0 1
iwg ilog iwg ilog
0o 0 0 7 T2@-n @ 2@-D
1 0 0 1 1 0 o0 1 1)
B=col(Bg,B 1,B_ 2, ....B_,n-1,Br> t,l- f,za ce ’L(,Nfll R)»

and

Zg=col(Dg, 239, 9%0:290: 290:Z30: Q0 - - - Ino+ o) -

Solving Eq.(61) yields at once an explicit expression of
the B’s in terms of the initial condition

o Q% +2(d—1)D}

, 62
0 o2 (62
NO%, — Q%  d(NZ°%—17°
BlLg-1= QqZON QTO+i : zﬁwa = 63
forg=2,3,... N, and
d—1)(Q%—2ND? d—1)7°
R:( (970 0)+i( JUAD 64

2Nw3 Nlwg

IV. DISCUSSION

Having solved the nonlinear problem analytically in a per-

A. Intensity coherence

The collective self-organized feature of multimode Fabry-
Perot lasers is that relaxation oscillations of the modal inten-
sities are not uncorrelated. At both(1) and O(e), modal
oscillations at(li are always inphased because the coeffi-
cients of expttiwgT_4) for the total intensity are precisely
times those for a modal intensity, as is clearly seen from Egs.
(19) and (44). On the other hand, for oscillations &%, ,
perfect antiphase occurs at baft{1) andO(e) because the
modal intensities contain terms  proportional to
exp(*iw, T_4), while the total intensity has no contribution
proportional to expfiw T_4), as is clearly seen from Eqgs.
(17) and (43).

The additional signature of AD gained from the nonlinear
analysis developed in this paper is thatt) the oscilla-
tion atQ g+, is present in the modal intensities but absent
in the total intensity, as is clearly seen from E¢7) and
(48). Thus, perfect antiphase arisestat* (), as well. Our
analytical results are confirmed numerically in Fig. 1, where
we plot the intensity power spectra using the transient time

turbative manner, we discuss in this section the physical corevolution obtained by numerically solving the full nonlinear
sequences of our results: intensity coherence, damping rateBSD equationg1). It is evident from Fig. 1 that, in order of

and universal versus initial-condition-sensitive properties.

increasing frequencies, there are six peakQat Qg—Q, ,
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CNI[1+2(d—1)]

Pl ; P2 FR_FL_ 2 . (66)
4wR

B Obviously, the rhs of Eq(66) is positive and, hence, we
B have the relation
A AN\

Fr>T, (67)

R I’ P; R Py/10 which means that the oscillation 8tz decays faster than the
0 40

oscillation atQ), .
The dependence ofy displayed byBo, B, j, andBg in

Egs.(53), (54), and(55) is derived from the solvability con-

B k i ditions (49)—(51). It is obvious, from(56)—(58), thatgg, g, ,

. TEVAN : R——AN and gr are all real and negative. Furthermore, it is easily
0 2 60 8 100 0 20 40 60 30 100 checked from(56)—(58), that the absolute values of tigs
NORMALIZED FREQUENCY  NORMALIZED FREQUENCY are bounded

FIG. 1. Intensity power spectra calculated numerically from the 190l <o, lgi/=T and |gr/<Tk, (68)

fmu!dn;m"n.ear TSD equqthn§_1) for N=3, k=5x10f, and equal 0g_uaranteeing stability of the steady state u@(@?). At this
gains. The laser is initially near the steady state correspon . . . s
ing to the pumpwy=4.6. The initial condition isD°= d(wy), order of approximation the damping rates of the osglllat|ons
Q=Q(Wo[1+0.01/@+1)], and 10=I(wp[1+0.01/g+N & P, DrTy, 200, Og, and Ag are, respectively,
+1)]. Thefinal state is the steady state with=2.6. Up toO(s), ~9L=LLt800, GreL=Trtl'Lte(grtgl), Ga=2G
our theory gives six possible oscillation frequenci€s:=18.69, =2(I' +eg), Gr=Irtegr, and ng:_ 2Gr=2(I'g
Or—Q, =26.33, A2, =37.37, 0z=45.02, O+ Q,=63.70, and T &0gr). It follows from Eq.(68) that the damping rateg are
20x=90.03, which are well reproduced in the power spectra of thedll positive.

modal intensities. The total intensity power spectrum, as predicted It is interesting to note the relationship between ¢'&
by the theory, displays only three peaks &2, Qg, and ).

Perfect antiphase &3+ (), , in addition to that af) , is verified.

For all figures, frequencies are in units of the population inversion 90=2(9L.—9r), (69
decay rate.

from which we readily get

2Q., Qg, QOrt+Q,, and A)y in the power spectra of the
modal intensities but only three peaks a2, g, and 0r>0, . (70)
2Qg in that of the total intensity.

Relation(69) is easily derived from(65) by taking into ac-

count Egs(56)—(58) and the equalities/= w§+ 1 as well as

w4=NI+d—1. Relations(67) and(70) allow us to remark
A nonlinear analysis is essential in obtaining the depenthat up toO(&?) the oscillation atQy is still damped out

dence on time scales slower th@in;. From the solvability faster than the oscillation &, because

conditions (25)—(27) we obtain the dependence dn, at

B. Damping rates

O(e), which is of the form exp 'y, gTo), as seen in Egs. Gr—G =I'r—TI'Lt&(gr—9L)>0.
(33), (35), and(37). Of importance is the fact that we have
been able to derive the’s, Egs.(34), (36), and(38), in such C. Universal versus initial-condition-sensitive properties

a way that their positivity is manifest. This reveals that at
O(e€) the relaxation oscillations decay in time and thes
are the damping rates. Furthermore, a direct use of 8¢5.
(36), and(38) yields the relation between the different damp- w 2

ing rates[35] PJ(Q)=‘ fo Zy(tH)exp27i Qt)dt| (71

Io=2(2T' —Tp), (65

An effective tool to study the laser dynamics is the inten-
sity power spectrum defined by

where j=T corresponds to the total intensity aneFq to
from which it follows that modeq intensity. It is clear from our analytical results, Egs.
(17), (19), (43), (44), (47), and(48) that, independent of the
r >EI‘ initial condition, the following power spectra relations hold:
L 2 R-
P1(Qr)=Px(Qg)=---=Pn(QR),
However, more interesting is the relative magnitude between
I'L andI'g themselveqrather than betweeh| andI'/2). P+(Qr)= N2Pp(QR); p=1,2,...N, (72
This can be obtained by observing, from E(#6) and(38),
that PT(QL):PT(QR+QL):PT(QR_QL):O
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The.above relations are an expres;ion of the inphaseﬁq(t)=[aRcos(ZwQRt)+ﬂRsin(27rQRt)]exp(—FRt)
dynamics atQlg and the perfect antiphase &, and )
Qr*Q, . These properties are universal in the sense that +lap qcod2mQt) + B SN2 t) Jexp(— T t),
they depend neither on the initial conditions nor on the laser (73
parameters.

On the contrary, the power spectrum peak height at ghere
certain frequency is a function of the initial condition. While

the peak height atQ, , 2Qg, andQr* ), is entirely dic- 7% 1 (2NDJ— Q%))
tated by theC coefficients the peaks d, and )y are AR=" BR:T
mainly determined by th® coefficients. The correction to R
P4(Q gr) due to theC’s is a small correction of ordes.

g\ *L,R _ 0 _ 0
Since the explicit dependence of tBés on the initial con- . :Nzgo 7o and B _ (@10~ NQqo)
dition has been derived in Eq&62)—(64), we are in a posi- La N L.a Nd '

tion to investigateP ({1, g) as a function of the initial con-

dition. Making use of Eqs(62)—(64) we write the modal

intensity to leading order of in the form

aRFR+ 47TBRQR

47TﬂL,qFLQL+ aL'q[FE+4772(Qé—QE)]

Inserting Eq.(73) into Eq. (71) and integrating ovet, we
readily obtain

2

Po(Qr) =4720%

TR(T'3+1672Q3)

[T2+472(Qr+ Q)2 T2+ 472(Qr—Q)?]

2
‘ ar(T3+8m202)+ 27 BrI'rOQR . 27 UITE—472(QR— QD) ]+ a JULTE+472(QF+ Q)]

TR(I'3+167203)

and

Pq(QL) = Pq(QR) |{FR<—>FL Qp=Q AR g ,BRHBL’q} .
(75

In our theory, by definition{), r are O(e™Y) and I' rare
0(1), i.e., Q| g>=I'| g. In this limit, Egs. (74) and (75
reduce to

ak+ Bh _ (2wgT9)?+1%(2ND)— Q$0)2V

Py(QR)=
al{le) 412 16N2w2l2
(76)
and
2 2
aL,q+IBL,q
Py Q)= Ld ~la
_dZ(NISO—Z?o)2+wE(Q$o—Nng)z 7

AN2d?T?

[T2+472(Qr+ Q)2 T2+472(Qr—Q)?]
(74

determined by the initial deviatior®), 0%,, and7%, of the
global variables only.

(2) The peak height af), is mode dependent and is un-
affected by the initial deviation of the spatially averaged
population inversioﬂ)g. AD at ), is a very sensitive func-
tion of the initial conditions{i) All modes may have a finite
peakPy(0)>0 if QJy# QF,/N or/andZy# I3,/N for all
g. In particular, if @3y andZ, are such thaf,=19,=0,
then Pq(Q) e (w Qo)+ (dZo)% Figure 2 displays the
power spectra foN=3, k=5x 10" and the initial conditions
DJ=3.5 09=3.0, Q%=-20, Q%=-1.0, 79=2.0,
79=—1.1, andZ3,=—0.9. These power spectra are ob-
tained by numerical simulation of the full TSD rate equations
(1). According to Eq.(77), our theory predictsP,(Q)
>P,(Q)>P53(Q.)>0. Indeed, this is numerically con-
firmed in Fig. 2. The fact that perfect antiphase occurs when
every mode has a nonzero power spectrum peak cannot be
obtained from the analysis based only on the eigenvector: the
initial condition plays a crucial roleii) A modeq displays
no peak, i.e.Py(£) =0, if its initial deviations satisfy the
conditions Qg,= Q%/N and Zg,=1%/N. If there areN—2
such modes, then the two remaining modes have equal peaks
regardless of their initial states. This is illustrated numeri-

Now we are able to relate power spectrum peak heights naally in Fig. 3 for N=3, k=5x10% D§=0.1, 93;=9.0,
only at the same frequency but also at different frequencies29,=1.0, Q3,=5.0, Z3;=10.0, Z3,= 2.0, andZ3,=6.0. (iii)
As a consequence of Eg&6) and (77), we can make the Depending on the initial condition, a special situation may

following remarks.

occur in which all the individual modal intensities as well as

(1) The peak height af)r is mode independent and is the total intensity show only one peak@g but no peak at
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B [ Pr/10

-.|.A.|.|A|. [ N [
0 10 20 30 40 50 60 0 10 20 30 40 50 60 [ JL
l | | n L
NORMALIZED FREQUENCY NORMALIZED FREQUENCY 0 10 20 30 40 50 60
FIG. 2. Same as Fig. 1 but the initial state is specified by NORMALIZED FREQUENCY

D°=d(w)+3.5k, QI=Q(w)+3.0k, Q3=Q(w)—2.0k, Q3
=Q(w)—1.0k, 19=1(w)+2.0hk, 19=I(w)—1.14k, and 15
=1(w)—0.9\k. The peak relationd;(,)>P,(Q,)>P3(Q,)
>0 andP,(QR) =P,(Qg)=P3(Qg)>0 agree with the analytical
result.

FIG. 3. Same as in Fig. 2 buD°=d(w)+0.1k, Q%
=Q(w)+9.0k, QJ=Q(w)+1.0k, Q3=Q(w)+5.0k, 19
=1(w)+10.0nk, 19=1(w)+2.0nhk, and 19=1(w)+6.0nk. At
Q, mode 3 displays no peak while modes 1 and 2 show equal
peaks, in accordance with the theory.

all at Q) . Theoretically, this corresponds to the “symmet- where w, = wg/2=y2/7 andM{*+23*) are given in Appen-

ric’ initial conditions {Q%=0Q%=:--=Q% and dix E.
I3=13= - - =Ijo}- This is confirmed numerically in Fig. ~ The solvability conditions (25—(27) with M{®,
4. MP=MP, andMP=M? yield that the amplitudeA,

(3) The modal peak ratio at different frequencies, as anyst vary inT, as
rule, depends strongly on the initial condition. In Fig. 5,
again for N=3, k=5x10°, we draw the ratio Ap=Bo(T{,T,, ...)exp —53Ty/32)
R%z Pq(Q)/P4(Qg) as a function of D8 and fixed ) )
0%,=3.0,0%= —2.0, 9%= —1.0,7%,=2.0,7%= — 1.1, and with Bo(T¢,To, ...) an unknown function, whereas 'the
73=—0.9. The agreement between the theoreticallid To-dependentA, and Az verify two coupled differential
curves and numericalblack circle$ results is very good. equations
Note again that without considering the initial condition, no
relations between the power spectrum peak heights at differ-
ent frequencies can be established.

AL: _AL+AEAR’

[ P13
V. THE RESONANT CASE i
The analytic results presented above are invalid for
Q=20 since this makes bottg{3) in Eq. (45 and
24D in Eq. (47) divergent. Solving the implicit equation
Qg=2Q, yields N=2 andw=15/7 [2,11]. This resonant L Pr/10
case must be handled separately. THd) general solution [
remains formally determined K1) but the amplitudes\ , B
Ag do not simply follow the lawg35), (37). Instead of Eq. -
(24), the resonant case requires the following decomposition i
OfMl: PR T N I 5 N
0 10 20 30 40 50 60
NORMALIZED FREQUENCY
M =M(0)+[M(1)exq—iw T )+M(2)exq—2iw T ) FIG. 4. Same as Fig. 2 but the individual modes are equally
= 1 Lot 1 Lot perturbed att=0: D°=d(w)+1.0k, Q%,,=Q(w)+3.0k, and
+ |\/|<13)qu —3Biw T_)+ |\/|(14)qu —diw T_y) 19, 5= (w) +2.04/k. Both analytical and numerical results yield no

peaks a}, in the power spectra of both the modal and total inten-
+c.cl, (78) sities.
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25 1.0
i =1 0.8
20 |- q . |
i £ 0.6
15| £ i 2
5 [ 2 = 04 -
ol 02 1 \\\
0‘0 Il | Il | 1
5 3 1.0
0.8
Z 06|
&~ -
= 04|
i 1
FIG. 5. The ratiosRy=Py(Q)/Py(Qg) between the power 02 |- 2
spectrum peak heights at different frequenues as a functidpgof 0.0 1 L1
when the other initial values are fixed :131 Q(w) + 3.0k, 00 05 1.0 15 20 25 3.0
QI=Q(w)—2.0k,  Q5=Q(w)—1.0k,  19=1(w)+2.00k, Ty

19=1(w)— 1.1k, and I3=1(w)—0.9Ak. The solid curves are

2 2 2__ 2
plotted using Eqs(76) and (77), whereas the black circles result ~ FIG- 6. |AL(To)|* and|Ag(To)|* vs T for |A_(0)[*=[Ag(0)|
from numerical simulations. =1, RdA (0)]=0.2, R¢Az(0)]=0.9 (curves labeled 1and Re

[AL(0)]=0.9, R¢AR(0)]=0.2 (curves labeled 2 The dashed
curves are foww# 15/7. The dimensionless tinTg is defined in Eq.

(4).

Ag=—T5AR/64— AZ/8. (79

These are the usual equations that describe second harmonig(2) =Lcol( 3i \ﬁ(345AR—56A2) 42 75Ag— 8A?)
generation in nonlinear optid®]. It is easy to check from Lpar 1536 2 - -

Eq. (79) that 7
—12i \[5(255AR— 8A?),3545Ax+ 8A?),

J ’ 1 ) 1/75 ) )
T\ AR glARl® | = = 7| g |ARI*+[AR* | <O. 7 )
0 —2i \/=(765Ag— 15242) |, (82)
(80) 2
Equation (80) means that both th€), and Qy relaxation 5 3 21 [7
oscillations always decay on the time scallealthough the 283 2=~ 7ALARc0l 0,0,0 8 2k (83

corresponding damping rates are not simply 1 and 75/64 as
derived forw= 15/7. Figure 6 illustrates how the decay pro-

cesses occur and how they are influenced by the initial con- 7 7 2 2
ditions. Z00a= §AR00|( —i \/;,4,2| \/;,2,| \[7) (84)

The O(g) particular solution of Eq(9) in the resonant
case is

The vectorsZ are five-dimensional, sindé= 2. The surpris-
_ . ing result due to the resonant interaction between the two
21 par= 21 pareXP ~ 53T6/32) + [ Zipa X~ T-1) intrinsic frequencies), and Qg=2Q, is that, no matter
+Z(1parexli—2iwLT—1)+Z(1pareXF(—3iwLT—1) yvhat A_ and Ay are, the modal oscillations appear to be
' inphased at 24 [see EQq.(84)] and not at 0 as in the
Z(l4garexp(—4iwLT,l)+c.c.], nonresonant case. Abg, as is evident from Eq(82), the
inphased dynamics is destroyed by spontaneous subharmonic
conversion associated with termsA? . It is worth empha-
sizing that such unusual properties, i.e., inphased oscillations
at 2() i butnotat (), are specific for the resonant case: any
218, deviation from the resona}nt cagsay, by settingN=2 ar_1d
10';(” coI(O 2,0,1,0, w# 15/7 orN=3 and arbitraryw>1) will recover the in-
, 128 phased dynamics &z and remove it at Q. As for AD,
the resonant case, as revealed from E8®%. and(83), is just
a particular case of the general consideration. Here, because

Z&lpar Z(AL+A*AR)CO|(0008,— \[E) (81) ng(:R Q, =Q, andQg+Q, =3Q,, AD arises at(); and

where
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VI. CONCLUSION associated damping rates and the relative weights, all of

In this paper we have shown that a multiple time Scalewhich could s_carcely be guessed qffhand. For the damping

analysis of the TSD rate equations can be carried out beyo qies, we denve.some knovvn relat|0n_s but add new re_sults
WMat fully determine the relative magnitude of the damping.

the usual linear approximation that defines the referenc L L .
models[29] and [31]. The analysis we have presented ian addition, an explicit evaluation of the power spectra leads

fluorescence lifetime. This limit holds for many solid-state modes but at the same frequencies.

and microchip lasers. Without any approximation, the TSD Finally, we show that there is a resonant situation in

equations are not solvable in analytic form for an arbitrary

number of modes. We have introduced two simplifying as-WhICh the two internal frequencidg and(2, are commen-

sumptions that make the problem soluble by iteration: thesurate. This requires a special analysis since otherwise there

linear gains and losses are mode independent. This is a stap~ divergencies. In the framework of the perturbation analy-

N . L Sis carried out in this paper, there is no boundary layer con-
dard approximation and its validity rests on the fact that the ecting the resonant and the nonresonant situations. Such a

Iongl_tudlnal r_nodes are spread over a very small fraction 0Eoundary layer would require a different scaling to appear
the linear gains and losses of the spectral ranges.
and be analyzed.

The mathematical development is presented in Sec. lll,
while the physical consequences are discussed in Sec. IV.
Among the results obtained here is the list of frequencies at
which the solution of the TSD equations will display oscil-
lations and the relative weight of these oscillations in the This research was supported in part by the Fonds National
dynamical evolution. Although the oscillation frequenciesde la Recherche ScientifigBelgium) and the Interuniver-
could have been foreseen quite easily, we also derive thgity Attraction Pole program of the Belgian government.

ACKNOWLEDGMENTS

APPENDIX A: DEFINITIONS OF L, M,, AND M,

The matrixL, and the vector#!; andM, appearing in Eqs(8)—(10) are

m; o ... 0O
L=, . . .
R o ... my
where
0 -1 0
0 —1/2
m;= NI 0 —1/2 My=My=--.=my= q 0 |
0 d-—NQ 0
0 O
I 0O O , 0 0o 0 0
RO—QO'O_ - 9=lo o
0 0
while

92 P 1N B, aT P 1 9 oT.
— -7 _ —\ Z7q0 710 N -7 2 720
M, coI[((ﬂ_zl 5T 1)D0,2|q§,1 T aTO'N'DO (aTOJrU)QTO,ZI aT,lz2° aTO"DO

? - T0p +U
Q2031 G170 37, o T,

J J J
—((9—_'_0—I—U ng,...,IDO—(a—TO%—U Q30'ID0_((9_-|—()+U)QNOl

(A1)
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and

(92
oT%,  9To
1 9 [&

54
-7 _ 90
1 9T_, ,,21 (I oZq1~ 31)

-1

- 20 9 & . 3 3
V\oT-y 0Ty g3, 9T-, 4T,

N

a1 dZrg
4 —_— .__.E 2 _ -
&T0(21q=1 Zoo I“) T,

J J
(IT0+QT0:9T__1)D0+NIDI (aT +U)QTO &Tl
1 9 Ty Ty 0T
7 _aT_l(Iz"I”— 37" a_TO TR T

0 aJ (9Q20
M,= Tyt Qoo aT_, Do+ID,—| == + U|Qy— T,
1 9 z , 9Ty
797 ( Taols— ) —0(2—1"131)-'—”1

3930
T,

1 9 T\ 9 [T 8Ino
7_—0T_1(IN°IN’_7 AT o
0Lno

0 d
(INO+QNO(9T_ )D0+ID1 (aT U)QNI_O»’_Tl /

(A2)

<9 3

APPENDIX B: DEFINITIONS OF M{’

Here are the expressions ot in Eq. (24):

M(®=coll — =2 AOONA 0,4,,0 0 B1
1 co 2 ,U, 0 ,Ao, ,Ao,..-,;A01 ( )

o A i A i Al N
M<L>—col(ooo AL L’Z,AL,Z,...,%,AL,NJ, (B2)

M{P=col(ag,—iINrAg,NAg,—irAg, Ar, —irAR, AR, . .. ,—irAg, AR), (B3)
M{?Y=ibcol(ONAZ/IL,0A? 1,0A7 5,0, ... Af \_1,0), (B4)
M{?R=igAZcol(0N/21,0,1,0,1,0. . .,1,0, (B5)
M-~ R =iA%col(0,0,0h A 1,0h A ,0,... (A 41,0), (B6)
and
M- R =iAgcol(0,0,0n A 1, 0h(TIA ,0,... h(DA (_1,0). (B7)
In the above expressions the following notations have been introduced:

N[ (w3+1)Ag+AR]
NQ—d :

I . ;

N-1 N-1 N-1
NI

I 7 2_
NO—d" AR_(NQ—d U)AR Ag, A? ;A + > EALlALJ,

j=i+1 i=
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57
b= Z_(UE _ 2(,0% h _ 2(,0|_(,UR((DLI (J)R)
R (NQ—d)?’ ~ d(NQ-d)

The dot implies a derivative with respect 1g.

APPENDIX C: NOTATIONS FOR  Z 5,
This appendix defines the notations appearing in E43—(48):

a=w—[2W(N—2NQ+2d)—3NI+3U(NQ—d)], B=2Nw+NI-U(NQ—d),
R

1
19=w—[NI(NQ—8N—d)+U(8N—NQ—d)(NQ—d)—GNW(NQ—d)],
R
N-1 N-1 N-1
o=uBl-vB};, ¢;=xBI-yB};, 552241 Bf,ﬁj;ﬂ Z«l BLiBL,>
n= 2 (wz—wz) v= 2l (do?—wd), x= ! [d(wz—w2)+3NQw2]
3Nw|_ L R/ 3N L R/ 3N(1)E L R L
dl ZwR
= 4o’ — w? , =— " J[w?>—wi(1+6l ,

7= 15— [NQUwE— o)) ~d(wi— o)) ~6dlwFl, o=(o twm)d.
R L

APPENDIX D: DEFINITIONS OF MY
The matricesM$ in Eq. (52) are

m (20) = COl(BO y N a.1§0 y NEO ,a1§0 ,’B;O ,a1§0 ,’éo f

.. ,a1Bg.Bo), (D1)
'vI(ZL):COI(01010EL,1v'EL,lv’BL,Z-EL,Zi e agL,Nfla’BL,Nfl)- (D2)

and
M(ZR):COI(NﬁR5N’BR1NBR!§R1’5R1ER!’5R1 e igRi’B ) (DS)

In Egs.(D1)-(D3)
EO:[(FO_l)EO_gé]IZ, EO=FOEO—§6, EL’j:(ia2+a3)r|_§|_'j_ia2§|l_’j,

BL,j:(l_ia4)FL§L,j_§|’_,j ) IBR:[(35+ia6)(FR_W)_ia5wwR]§R_a5§|;a

- _ - = = -~ =, (2N—1)TI? wR
BR:(a7+|a8)FRBR_|agBR, bR:FRBR_BR' al=—2, a2:_ y
dwg d

U _ U B I _al _ Bag B
3= 1g° 34——4—0)R- as——m1 35—4—%7 7=~ 88T @Rrds:

The prime denotes a derivative with respeciTta
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APPENDIX E: DEFINITIONS OF THE MATRICES M {01234

The matriceM {*+?3*) appearing in Eq(78) are

i (7. .
MV = col( 0,0,05 \[E(AL— 2AAR), — 2AL—AL) ,

15A+7A | [7 . 15AL+4Ag i [7 . 15AL+ 4A
(2)_ —TRTITR _\ﬁ 2 __TRT™R _\ﬁ 2 _TRTTR
M col( 5 15 V(AL +4AR), 5 g V5 (Al +8AR). 2

M(3)—3—i\ﬁA Arc0l(0,0,0,1,0
]__2 2 LR VU, L, Y,

and

M (¥ = 2i \14AZc0l(0,2,0,1,0.
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